extension | φ:Q→Aut N | d | ρ | Label | ID |
(C4×C8)⋊1C22 = C42.398D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):1C2^2 | 128,210 |
(C4×C8)⋊2C22 = D4⋊M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):2C2^2 | 128,218 |
(C4×C8)⋊3C22 = D4.D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):3C2^2 | 128,371 |
(C4×C8)⋊4C22 = C42.691C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):4C2^2 | 128,1704 |
(C4×C8)⋊5C22 = C42.298C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):5C2^2 | 128,1709 |
(C4×C8)⋊6C22 = D4⋊D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):6C2^2 | 128,351 |
(C4×C8)⋊7C22 = C42.221D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):7C2^2 | 128,1832 |
(C4×C8)⋊8C22 = C42.356C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):8C2^2 | 128,1854 |
(C4×C8)⋊9C22 = C42.263D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):9C2^2 | 128,1937 |
(C4×C8)⋊10C22 = C42.406C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):10C2^2 | 128,1952 |
(C4×C8)⋊11C22 = D4×D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):11C2^2 | 128,2011 |
(C4×C8)⋊12C22 = D4⋊4D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):12C2^2 | 128,2026 |
(C4×C8)⋊13C22 = C42.462C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):13C2^2 | 128,2029 |
(C4×C8)⋊14C22 = C42.225D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):14C2^2 | 128,1837 |
(C4×C8)⋊15C22 = C42.352C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):15C2^2 | 128,1850 |
(C4×C8)⋊16C22 = C42.269D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):16C2^2 | 128,1943 |
(C4×C8)⋊17C22 = C42.410C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):17C2^2 | 128,1956 |
(C4×C8)⋊18C22 = D8⋊12D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):18C2^2 | 128,2012 |
(C4×C8)⋊19C22 = SD16⋊10D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):19C2^2 | 128,2014 |
(C4×C8)⋊20C22 = C4×C8⋊C22 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):20C2^2 | 128,1676 |
(C4×C8)⋊21C22 = C42.275C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):21C2^2 | 128,1678 |
(C4×C8)⋊22C22 = C42.283C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8):22C2^2 | 128,1687 |
(C4×C8)⋊23C22 = M4(2).51D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 16 | 4 | (C4xC8):23C2^2 | 128,1688 |
(C4×C8)⋊24C22 = M4(2)○D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8):24C2^2 | 128,1689 |
(C4×C8)⋊25C22 = M4(2)⋊7D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):25C2^2 | 128,1883 |
(C4×C8)⋊26C22 = M4(2)⋊9D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):26C2^2 | 128,1885 |
(C4×C8)⋊27C22 = M4(2)⋊10D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):27C2^2 | 128,1886 |
(C4×C8)⋊28C22 = M4(2)⋊11D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):28C2^2 | 128,1887 |
(C4×C8)⋊29C22 = D8⋊4D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):29C2^2 | 128,2004 |
(C4×C8)⋊30C22 = D8⋊5D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):30C2^2 | 128,2005 |
(C4×C8)⋊31C22 = SD16⋊1D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):31C2^2 | 128,2006 |
(C4×C8)⋊32C22 = SD16⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):32C2^2 | 128,2007 |
(C4×C8)⋊33C22 = D8○SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8):33C2^2 | 128,2022 |
(C4×C8)⋊34C22 = D8⋊6D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 16 | 4 | (C4xC8):34C2^2 | 128,2023 |
(C4×C8)⋊35C22 = D8○D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 16 | 4+ | (C4xC8):35C2^2 | 128,2024 |
(C4×C8)⋊36C22 = C42.277C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):36C2^2 | 128,1680 |
(C4×C8)⋊37C22 = C42.471C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):37C2^2 | 128,2054 |
(C4×C8)⋊38C22 = C42.474C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):38C2^2 | 128,2057 |
(C4×C8)⋊39C22 = D4⋊2SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):39C2^2 | 128,361 |
(C4×C8)⋊40C22 = C42.222D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):40C2^2 | 128,1833 |
(C4×C8)⋊41C22 = C42.357C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):41C2^2 | 128,1855 |
(C4×C8)⋊42C22 = C42.266D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):42C2^2 | 128,1940 |
(C4×C8)⋊43C22 = C42.408C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):43C2^2 | 128,1954 |
(C4×C8)⋊44C22 = D4×SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):44C2^2 | 128,2013 |
(C4×C8)⋊45C22 = D4⋊7SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):45C2^2 | 128,2027 |
(C4×C8)⋊46C22 = C42.461C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):46C2^2 | 128,2028 |
(C4×C8)⋊47C22 = C42.278C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):47C2^2 | 128,1681 |
(C4×C8)⋊48C22 = C42.472C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):48C2^2 | 128,2055 |
(C4×C8)⋊49C22 = C42.473C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):49C2^2 | 128,2056 |
(C4×C8)⋊50C22 = D4⋊5M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):50C2^2 | 128,222 |
(C4×C8)⋊51C22 = M4(2)○2M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):51C2^2 | 128,1605 |
(C4×C8)⋊52C22 = C42.677C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):52C2^2 | 128,1652 |
(C4×C8)⋊53C22 = C42.259C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):53C2^2 | 128,1653 |
(C4×C8)⋊54C22 = C42.262C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):54C2^2 | 128,1656 |
(C4×C8)⋊55C22 = C42.264C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):55C2^2 | 128,1661 |
(C4×C8)⋊56C22 = C42.265C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):56C2^2 | 128,1662 |
(C4×C8)⋊57C22 = M4(2)⋊22D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):57C2^2 | 128,1665 |
(C4×C8)⋊58C22 = D4×M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):58C2^2 | 128,1666 |
(C4×C8)⋊59C22 = D4⋊7M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):59C2^2 | 128,1706 |
(C4×C8)⋊60C22 = C42.693C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):60C2^2 | 128,1707 |
(C4×C8)⋊61C22 = C42.297C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):61C2^2 | 128,1708 |
(C4×C8)⋊62C22 = C42.299C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):62C2^2 | 128,1710 |
(C4×C8)⋊63C22 = C42.366C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):63C2^2 | 128,1868 |
(C4×C8)⋊64C22 = C42.240D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):64C2^2 | 128,1870 |
(C4×C8)⋊65C22 = C42.242D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | | (C4xC8):65C2^2 | 128,1872 |
(C4×C8)⋊66C22 = C2×D4⋊C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):66C2^2 | 128,206 |
(C4×C8)⋊67C22 = C2×C42.12C4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):67C2^2 | 128,1649 |
(C4×C8)⋊68C22 = C2×C42.7C22 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):68C2^2 | 128,1651 |
(C4×C8)⋊69C22 = D4×C2×C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):69C2^2 | 128,1658 |
(C4×C8)⋊70C22 = C2×C4.4D8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):70C2^2 | 128,1860 |
(C4×C8)⋊71C22 = C2×C42.78C22 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):71C2^2 | 128,1862 |
(C4×C8)⋊72C22 = C2×C4×D8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):72C2^2 | 128,1668 |
(C4×C8)⋊73C22 = C2×C8⋊4D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):73C2^2 | 128,1876 |
(C4×C8)⋊74C22 = C2×C8.12D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):74C2^2 | 128,1878 |
(C4×C8)⋊75C22 = C2×C8○D8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 32 | | (C4xC8):75C2^2 | 128,1685 |
(C4×C8)⋊76C22 = C2×C4×SD16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):76C2^2 | 128,1669 |
(C4×C8)⋊77C22 = C2×C8⋊5D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):77C2^2 | 128,1875 |
(C4×C8)⋊78C22 = C2×C4×M4(2) | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):78C2^2 | 128,1603 |
(C4×C8)⋊79C22 = C2×C8○2M4(2) | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):79C2^2 | 128,1604 |
(C4×C8)⋊80C22 = C2×C8⋊6D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8):80C2^2 | 128,1660 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C4×C8).1C22 = C42.397D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).1C2^2 | 128,209 |
(C4×C8).2C22 = C42.399D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).2C2^2 | 128,211 |
(C4×C8).3C22 = C42.45D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).3C2^2 | 128,212 |
(C4×C8).4C22 = C42.46D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).4C2^2 | 128,213 |
(C4×C8).5C22 = C42.373D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).5C2^2 | 128,214 |
(C4×C8).6C22 = Q8⋊M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).6C2^2 | 128,219 |
(C4×C8).7C22 = C42.374D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).7C2^2 | 128,220 |
(C4×C8).8C22 = C42.52D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).8C2^2 | 128,227 |
(C4×C8).9C22 = C42.53D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).9C2^2 | 128,228 |
(C4×C8).10C22 = C42.54D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).10C2^2 | 128,229 |
(C4×C8).11C22 = SD16⋊C8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).11C2^2 | 128,310 |
(C4×C8).12C22 = Q16⋊5C8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).12C2^2 | 128,311 |
(C4×C8).13C22 = D8⋊5C8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).13C2^2 | 128,312 |
(C4×C8).14C22 = D4⋊3D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).14C2^2 | 128,357 |
(C4×C8).15C22 = Q8⋊6SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).15C2^2 | 128,358 |
(C4×C8).16C22 = Q8⋊3D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).16C2^2 | 128,359 |
(C4×C8).17C22 = C42.189C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).17C2^2 | 128,360 |
(C4×C8).18C22 = D4.SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).18C2^2 | 128,367 |
(C4×C8).19C22 = Q8.Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).19C2^2 | 128,368 |
(C4×C8).20C22 = D4.3Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).20C2^2 | 128,369 |
(C4×C8).21C22 = C42.199C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).21C2^2 | 128,370 |
(C4×C8).22C22 = C42.201C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).22C2^2 | 128,372 |
(C4×C8).23C22 = Q8.D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).23C2^2 | 128,373 |
(C4×C8).24C22 = Q8⋊3SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).24C2^2 | 128,374 |
(C4×C8).25C22 = D4.5SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).25C2^2 | 128,375 |
(C4×C8).26C22 = D4⋊3Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).26C2^2 | 128,376 |
(C4×C8).27C22 = Q8⋊3Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).27C2^2 | 128,377 |
(C4×C8).28C22 = C42.207C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).28C2^2 | 128,378 |
(C4×C8).29C22 = C42.301C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).29C2^2 | 128,1713 |
(C4×C8).30C22 = C42.695C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).30C2^2 | 128,1714 |
(C4×C8).31C22 = C42.304C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).31C2^2 | 128,1718 |
(C4×C8).32C22 = C42.697C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).32C2^2 | 128,1720 |
(C4×C8).33C22 = C4.D16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).33C2^2 | 128,93 |
(C4×C8).34C22 = C8.27D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).34C2^2 | 128,94 |
(C4×C8).35C22 = C4.10D16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).35C2^2 | 128,96 |
(C4×C8).36C22 = C4.6Q32 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).36C2^2 | 128,97 |
(C4×C8).37C22 = C42.91D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).37C2^2 | 128,303 |
(C4×C8).38C22 = C8⋊9D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).38C2^2 | 128,313 |
(C4×C8).39C22 = C8⋊9Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).39C2^2 | 128,316 |
(C4×C8).40C22 = C42.181C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).40C2^2 | 128,352 |
(C4×C8).41C22 = Q8⋊D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).41C2^2 | 128,353 |
(C4×C8).42C22 = D4⋊Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).42C2^2 | 128,364 |
(C4×C8).43C22 = Q8⋊Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).43C2^2 | 128,365 |
(C4×C8).44C22 = C42.195C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).44C2^2 | 128,366 |
(C4×C8).45C22 = D4.7D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).45C2^2 | 128,379 |
(C4×C8).46C22 = Q8⋊4Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).46C2^2 | 128,380 |
(C4×C8).47C22 = D4⋊4Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).47C2^2 | 128,381 |
(C4×C8).48C22 = C42.211C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).48C2^2 | 128,382 |
(C4×C8).49C22 = C8⋊7D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).49C2^2 | 128,399 |
(C4×C8).50C22 = C8⋊13SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).50C2^2 | 128,400 |
(C4×C8).51C22 = C8.28D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).51C2^2 | 128,401 |
(C4×C8).52C22 = Q8⋊1Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).52C2^2 | 128,402 |
(C4×C8).53C22 = C8⋊10SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).53C2^2 | 128,405 |
(C4×C8).54C22 = C8⋊7Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).54C2^2 | 128,406 |
(C4×C8).55C22 = D4.1Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).55C2^2 | 128,407 |
(C4×C8).56C22 = Q8.1Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).56C2^2 | 128,408 |
(C4×C8).57C22 = D4.2D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).57C2^2 | 128,413 |
(C4×C8).58C22 = Q8.2D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).58C2^2 | 128,414 |
(C4×C8).59C22 = D4.Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).59C2^2 | 128,415 |
(C4×C8).60C22 = Q8.2Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).60C2^2 | 128,416 |
(C4×C8).61C22 = D8⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).61C2^2 | 128,938 |
(C4×C8).62C22 = Q16⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).62C2^2 | 128,939 |
(C4×C8).63C22 = D8.4D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).63C2^2 | 128,940 |
(C4×C8).64C22 = Q16.4D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).64C2^2 | 128,941 |
(C4×C8).65C22 = D8⋊1Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).65C2^2 | 128,956 |
(C4×C8).66C22 = Q16⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).66C2^2 | 128,957 |
(C4×C8).67C22 = D8⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).67C2^2 | 128,958 |
(C4×C8).68C22 = C4.Q32 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).68C2^2 | 128,959 |
(C4×C8).69C22 = C42.384D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).69C2^2 | 128,1834 |
(C4×C8).70C22 = C42.224D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).70C2^2 | 128,1836 |
(C4×C8).71C22 = C42.358C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).71C2^2 | 128,1856 |
(C4×C8).72C22 = C42.361C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).72C2^2 | 128,1859 |
(C4×C8).73C22 = C42.265D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).73C2^2 | 128,1939 |
(C4×C8).74C22 = C42.267D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).74C2^2 | 128,1941 |
(C4×C8).75C22 = C42.409C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).75C2^2 | 128,1955 |
(C4×C8).76C22 = C42.278D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).76C2^2 | 128,1958 |
(C4×C8).77C22 = C42.280D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).77C2^2 | 128,1960 |
(C4×C8).78C22 = C42.282D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).78C2^2 | 128,1962 |
(C4×C8).79C22 = C42.425C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).79C2^2 | 128,1975 |
(C4×C8).80C22 = D8⋊13D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).80C2^2 | 128,2015 |
(C4×C8).81C22 = D4×Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).81C2^2 | 128,2018 |
(C4×C8).82C22 = Q16⋊13D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).82C2^2 | 128,2019 |
(C4×C8).83C22 = D4⋊5Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).83C2^2 | 128,2031 |
(C4×C8).84C22 = C42.465C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).84C2^2 | 128,2032 |
(C4×C8).85C22 = C42.468C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).85C2^2 | 128,2035 |
(C4×C8).86C22 = C42.469C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).86C2^2 | 128,2036 |
(C4×C8).87C22 = D4⋊5D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).87C2^2 | 128,2066 |
(C4×C8).88C22 = D4⋊6Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).88C2^2 | 128,2070 |
(C4×C8).89C22 = C42.490C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).89C2^2 | 128,2073 |
(C4×C8).90C22 = C42.491C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).90C2^2 | 128,2074 |
(C4×C8).91C22 = Q8⋊4D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).91C2^2 | 128,2090 |
(C4×C8).92C22 = C42.502C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).92C2^2 | 128,2093 |
(C4×C8).93C22 = Q8⋊5Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).93C2^2 | 128,2095 |
(C4×C8).94C22 = C42.505C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).94C2^2 | 128,2096 |
(C4×C8).95C22 = Q8×D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).95C2^2 | 128,2110 |
(C4×C8).96C22 = Q8×Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).96C2^2 | 128,2114 |
(C4×C8).97C22 = Q8⋊5D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).97C2^2 | 128,2123 |
(C4×C8).98C22 = Q8⋊6Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).98C2^2 | 128,2127 |
(C4×C8).99C22 = C8.30D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).99C2^2 | 128,92 |
(C4×C8).100C22 = C8.16Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).100C2^2 | 128,95 |
(C4×C8).101C22 = C42.92D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).101C2^2 | 128,305 |
(C4×C8).102C22 = C42.21Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).102C2^2 | 128,306 |
(C4×C8).103C22 = D8.5D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).103C2^2 | 128,942 |
(C4×C8).104C22 = Q16.5D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).104C2^2 | 128,943 |
(C4×C8).105C22 = D8.Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).105C2^2 | 128,960 |
(C4×C8).106C22 = Q16.Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).106C2^2 | 128,961 |
(C4×C8).107C22 = C42.450D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).107C2^2 | 128,1838 |
(C4×C8).108C22 = C42.451D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).108C2^2 | 128,1839 |
(C4×C8).109C22 = C42.226D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).109C2^2 | 128,1840 |
(C4×C8).110C22 = C42.353C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).110C2^2 | 128,1851 |
(C4×C8).111C22 = C42.354C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).111C2^2 | 128,1852 |
(C4×C8).112C22 = C42.355C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).112C2^2 | 128,1853 |
(C4×C8).113C22 = C42.270D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).113C2^2 | 128,1944 |
(C4×C8).114C22 = C42.411C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).114C2^2 | 128,1957 |
(C4×C8).115C22 = C42.284D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).115C2^2 | 128,1964 |
(C4×C8).116C22 = C42.285D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).116C2^2 | 128,1965 |
(C4×C8).117C22 = C42.423C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).117C2^2 | 128,1973 |
(C4×C8).118C22 = C42.424C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).118C2^2 | 128,1974 |
(C4×C8).119C22 = Q16⋊12D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).119C2^2 | 128,2017 |
(C4×C8).120C22 = C42.485C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).120C2^2 | 128,2068 |
(C4×C8).121C22 = C42.486C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).121C2^2 | 128,2069 |
(C4×C8).122C22 = C42.488C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).122C2^2 | 128,2071 |
(C4×C8).123C22 = D8⋊6Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).123C2^2 | 128,2112 |
(C4×C8).124C22 = SD16⋊4Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).124C2^2 | 128,2113 |
(C4×C8).125C22 = Q16⋊6Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).125C2^2 | 128,2115 |
(C4×C8).126C22 = C42.527C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).126C2^2 | 128,2125 |
(C4×C8).127C22 = C42.528C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).127C2^2 | 128,2126 |
(C4×C8).128C22 = C42.530C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).128C2^2 | 128,2128 |
(C4×C8).129C22 = D8⋊C8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).129C2^2 | 128,65 |
(C4×C8).130C22 = Q16⋊C8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).130C2^2 | 128,66 |
(C4×C8).131C22 = C8.32D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 16 | 4 | (C4xC8).131C2^2 | 128,68 |
(C4×C8).132C22 = C8.24D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 16 | 4+ | (C4xC8).132C2^2 | 128,89 |
(C4×C8).133C22 = C8.25D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4- | (C4xC8).133C2^2 | 128,90 |
(C4×C8).134C22 = C8.29D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 16 | 4 | (C4xC8).134C2^2 | 128,91 |
(C4×C8).135C22 = C8.1Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8).135C2^2 | 128,98 |
(C4×C8).136C22 = C16.C8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8).136C2^2 | 128,101 |
(C4×C8).137C22 = M4(2)⋊1C8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).137C2^2 | 128,297 |
(C4×C8).138C22 = C8⋊1M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).138C2^2 | 128,301 |
(C4×C8).139C22 = C8⋊D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).139C2^2 | 128,417 |
(C4×C8).140C22 = C8⋊SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).140C2^2 | 128,418 |
(C4×C8).141C22 = C8⋊2D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).141C2^2 | 128,419 |
(C4×C8).142C22 = C8⋊2SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).142C2^2 | 128,420 |
(C4×C8).143C22 = C8.D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).143C2^2 | 128,421 |
(C4×C8).144C22 = C8.SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).144C2^2 | 128,422 |
(C4×C8).145C22 = C8⋊3SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).145C2^2 | 128,423 |
(C4×C8).146C22 = C8⋊Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).146C2^2 | 128,424 |
(C4×C8).147C22 = C8⋊4SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).147C2^2 | 128,425 |
(C4×C8).148C22 = C8⋊2Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).148C2^2 | 128,426 |
(C4×C8).149C22 = C8.8SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).149C2^2 | 128,427 |
(C4×C8).150C22 = C8.3Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).150C2^2 | 128,428 |
(C4×C8).151C22 = C8⋊5SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).151C2^2 | 128,446 |
(C4×C8).152C22 = C8⋊6SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).152C2^2 | 128,447 |
(C4×C8).153C22 = C8.9SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).153C2^2 | 128,448 |
(C4×C8).154C22 = C8⋊3D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).154C2^2 | 128,453 |
(C4×C8).155C22 = C8.2D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).155C2^2 | 128,454 |
(C4×C8).156C22 = C8⋊3Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).156C2^2 | 128,455 |
(C4×C8).157C22 = M4(2).1C8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8).157C2^2 | 128,885 |
(C4×C8).158C22 = C8.5M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 16 | 4 | (C4xC8).158C2^2 | 128,897 |
(C4×C8).159C22 = C8.19M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8).159C2^2 | 128,898 |
(C4×C8).160C22 = D8.C8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8).160C2^2 | 128,903 |
(C4×C8).161C22 = D16⋊5C4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8).161C2^2 | 128,911 |
(C4×C8).162C22 = C8.3D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8).162C2^2 | 128,944 |
(C4×C8).163C22 = D8⋊3D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 16 | 4+ | (C4xC8).163C2^2 | 128,945 |
(C4×C8).164C22 = C8.5D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4- | (C4xC8).164C2^2 | 128,946 |
(C4×C8).165C22 = D8⋊3Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 16 | 4 | (C4xC8).165C2^2 | 128,962 |
(C4×C8).166C22 = D8.2Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4 | (C4xC8).166C2^2 | 128,963 |
(C4×C8).167C22 = C8.12SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).167C2^2 | 128,975 |
(C4×C8).168C22 = C8.13SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).168C2^2 | 128,976 |
(C4×C8).169C22 = C8.14SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).169C2^2 | 128,977 |
(C4×C8).170C22 = C16⋊3D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).170C2^2 | 128,982 |
(C4×C8).171C22 = C8.7D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).171C2^2 | 128,983 |
(C4×C8).172C22 = C16⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).172C2^2 | 128,987 |
(C4×C8).173C22 = C4×C8.C22 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).173C2^2 | 128,1677 |
(C4×C8).174C22 = C42.276C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).174C2^2 | 128,1679 |
(C4×C8).175C22 = M4(2)⋊8D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).175C2^2 | 128,1884 |
(C4×C8).176C22 = M4(2).20D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).176C2^2 | 128,1888 |
(C4×C8).177C22 = M4(2)⋊3Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).177C2^2 | 128,1895 |
(C4×C8).178C22 = M4(2)⋊4Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).178C2^2 | 128,1896 |
(C4×C8).179C22 = M4(2)⋊5Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).179C2^2 | 128,1897 |
(C4×C8).180C22 = M4(2)⋊6Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).180C2^2 | 128,1898 |
(C4×C8).181C22 = C42.255D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).181C2^2 | 128,1903 |
(C4×C8).182C22 = C42.256D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).182C2^2 | 128,1904 |
(C4×C8).183C22 = C42.390C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).183C2^2 | 128,1910 |
(C4×C8).184C22 = C42.391C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).184C2^2 | 128,1911 |
(C4×C8).185C22 = C42.259D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).185C2^2 | 128,1914 |
(C4×C8).186C22 = C42.260D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).186C2^2 | 128,1915 |
(C4×C8).187C22 = C42.261D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).187C2^2 | 128,1916 |
(C4×C8).188C22 = C42.262D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).188C2^2 | 128,1917 |
(C4×C8).189C22 = SD16⋊3D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).189C2^2 | 128,2008 |
(C4×C8).190C22 = Q16⋊4D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).190C2^2 | 128,2009 |
(C4×C8).191C22 = Q16⋊5D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).191C2^2 | 128,2010 |
(C4×C8).192C22 = D8○Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 32 | 4- | (C4xC8).192C2^2 | 128,2025 |
(C4×C8).193C22 = C42.492C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).193C2^2 | 128,2083 |
(C4×C8).194C22 = C42.493C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).194C2^2 | 128,2084 |
(C4×C8).195C22 = C42.494C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).195C2^2 | 128,2085 |
(C4×C8).196C22 = C42.495C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).196C2^2 | 128,2086 |
(C4×C8).197C22 = C42.496C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).197C2^2 | 128,2087 |
(C4×C8).198C22 = C42.497C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).198C2^2 | 128,2088 |
(C4×C8).199C22 = C42.498C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).199C2^2 | 128,2089 |
(C4×C8).200C22 = D8⋊4Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).200C2^2 | 128,2116 |
(C4×C8).201C22 = SD16⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).201C2^2 | 128,2117 |
(C4×C8).202C22 = SD16⋊2Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).202C2^2 | 128,2118 |
(C4×C8).203C22 = Q16⋊4Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).203C2^2 | 128,2119 |
(C4×C8).204C22 = SD16⋊3Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).204C2^2 | 128,2120 |
(C4×C8).205C22 = D8⋊5Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).205C2^2 | 128,2121 |
(C4×C8).206C22 = Q16⋊5Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).206C2^2 | 128,2122 |
(C4×C8).207C22 = C42.72C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).207C2^2 | 128,2129 |
(C4×C8).208C22 = C42.73C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).208C2^2 | 128,2130 |
(C4×C8).209C22 = C42.74C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).209C2^2 | 128,2131 |
(C4×C8).210C22 = C42.75C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).210C2^2 | 128,2132 |
(C4×C8).211C22 = C42.531C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).211C2^2 | 128,2133 |
(C4×C8).212C22 = C42.532C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).212C2^2 | 128,2134 |
(C4×C8).213C22 = C42.533C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).213C2^2 | 128,2135 |
(C4×C8).214C22 = C42.248C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).214C2^2 | 128,429 |
(C4×C8).215C22 = C42.249C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).215C2^2 | 128,430 |
(C4×C8).216C22 = C42.250C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).216C2^2 | 128,431 |
(C4×C8).217C22 = C42.251C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).217C2^2 | 128,432 |
(C4×C8).218C22 = SD32⋊3C4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).218C2^2 | 128,907 |
(C4×C8).219C22 = Q32⋊4C4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).219C2^2 | 128,908 |
(C4×C8).220C22 = D16⋊4C4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).220C2^2 | 128,909 |
(C4×C8).221C22 = C42.279C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).221C2^2 | 128,1682 |
(C4×C8).222C22 = C42.280C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).222C2^2 | 128,1683 |
(C4×C8).223C22 = C42.387C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).223C2^2 | 128,1907 |
(C4×C8).224C22 = C42.388C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).224C2^2 | 128,1908 |
(C4×C8).225C22 = C42.389C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).225C2^2 | 128,1909 |
(C4×C8).226C22 = C42.476C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).226C2^2 | 128,2059 |
(C4×C8).227C22 = C42.477C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).227C2^2 | 128,2060 |
(C4×C8).228C22 = C42.479C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).228C2^2 | 128,2062 |
(C4×C8).229C22 = C42.482C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).229C2^2 | 128,2065 |
(C4×C8).230C22 = C42.507C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).230C2^2 | 128,2098 |
(C4×C8).231C22 = C42.508C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).231C2^2 | 128,2099 |
(C4×C8).232C22 = C42.511C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).232C2^2 | 128,2102 |
(C4×C8).233C22 = C42.515C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).233C2^2 | 128,2106 |
(C4×C8).234C22 = C42.516C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).234C2^2 | 128,2107 |
(C4×C8).235C22 = C42.518C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).235C2^2 | 128,2109 |
(C4×C8).236C22 = C42.90D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).236C2^2 | 128,302 |
(C4×C8).237C22 = C42.Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).237C2^2 | 128,304 |
(C4×C8).238C22 = C8⋊12SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).238C2^2 | 128,314 |
(C4×C8).239C22 = C8⋊15SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).239C2^2 | 128,315 |
(C4×C8).240C22 = D4⋊SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).240C2^2 | 128,354 |
(C4×C8).241C22 = Q8⋊SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).241C2^2 | 128,355 |
(C4×C8).242C22 = C42.185C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).242C2^2 | 128,356 |
(C4×C8).243C22 = C42.191C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).243C2^2 | 128,362 |
(C4×C8).244C22 = Q8⋊2SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).244C2^2 | 128,363 |
(C4×C8).245C22 = Q8⋊4SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).245C2^2 | 128,383 |
(C4×C8).246C22 = C42.213C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).246C2^2 | 128,384 |
(C4×C8).247C22 = Q8.SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).247C2^2 | 128,385 |
(C4×C8).248C22 = D4⋊4SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).248C2^2 | 128,386 |
(C4×C8).249C22 = C8⋊8D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).249C2^2 | 128,397 |
(C4×C8).250C22 = C8⋊14SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).250C2^2 | 128,398 |
(C4×C8).251C22 = C8⋊11SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).251C2^2 | 128,403 |
(C4×C8).252C22 = C8⋊8Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).252C2^2 | 128,404 |
(C4×C8).253C22 = D4.2SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).253C2^2 | 128,409 |
(C4×C8).254C22 = Q8.2SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).254C2^2 | 128,410 |
(C4×C8).255C22 = D4.3SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).255C2^2 | 128,411 |
(C4×C8).256C22 = Q8.3SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).256C2^2 | 128,412 |
(C4×C8).257C22 = C42.664C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).257C2^2 | 128,449 |
(C4×C8).258C22 = C42.665C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).258C2^2 | 128,450 |
(C4×C8).259C22 = C42.666C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).259C2^2 | 128,451 |
(C4×C8).260C22 = C42.667C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).260C2^2 | 128,452 |
(C4×C8).261C22 = C42.223D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).261C2^2 | 128,1835 |
(C4×C8).262C22 = C42.359C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).262C2^2 | 128,1857 |
(C4×C8).263C22 = C42.360C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).263C2^2 | 128,1858 |
(C4×C8).264C22 = C42.264D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).264C2^2 | 128,1938 |
(C4×C8).265C22 = C42.268D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).265C2^2 | 128,1942 |
(C4×C8).266C22 = C42.407C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).266C2^2 | 128,1953 |
(C4×C8).267C22 = C42.279D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).267C2^2 | 128,1959 |
(C4×C8).268C22 = C42.281D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).268C2^2 | 128,1961 |
(C4×C8).269C22 = C42.283D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).269C2^2 | 128,1963 |
(C4×C8).270C22 = C42.426C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).270C2^2 | 128,1976 |
(C4×C8).271C22 = SD16⋊11D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).271C2^2 | 128,2016 |
(C4×C8).272C22 = D4⋊8SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).272C2^2 | 128,2030 |
(C4×C8).273C22 = C42.466C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).273C2^2 | 128,2033 |
(C4×C8).274C22 = C42.467C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).274C2^2 | 128,2034 |
(C4×C8).275C22 = C42.470C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).275C2^2 | 128,2037 |
(C4×C8).276C22 = D4⋊9SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).276C2^2 | 128,2067 |
(C4×C8).277C22 = C42.489C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).277C2^2 | 128,2072 |
(C4×C8).278C22 = Q8⋊7SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).278C2^2 | 128,2091 |
(C4×C8).279C22 = C42.501C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).279C2^2 | 128,2092 |
(C4×C8).280C22 = Q8⋊8SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).280C2^2 | 128,2094 |
(C4×C8).281C22 = C42.506C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).281C2^2 | 128,2097 |
(C4×C8).282C22 = Q8×SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).282C2^2 | 128,2111 |
(C4×C8).283C22 = Q8⋊9SD16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).283C2^2 | 128,2124 |
(C4×C8).284C22 = C16⋊1C8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).284C2^2 | 128,100 |
(C4×C8).285C22 = C42.252C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).285C2^2 | 128,433 |
(C4×C8).286C22 = C42.253C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).286C2^2 | 128,434 |
(C4×C8).287C22 = C42.254C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).287C2^2 | 128,435 |
(C4×C8).288C22 = C42.255C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).288C2^2 | 128,436 |
(C4×C8).289C22 = C42.281C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).289C2^2 | 128,1684 |
(C4×C8).290C22 = C42.385C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).290C2^2 | 128,1905 |
(C4×C8).291C22 = C42.386C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).291C2^2 | 128,1906 |
(C4×C8).292C22 = C42.475C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).292C2^2 | 128,2058 |
(C4×C8).293C22 = C42.478C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).293C2^2 | 128,2061 |
(C4×C8).294C22 = C42.480C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).294C2^2 | 128,2063 |
(C4×C8).295C22 = C42.481C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).295C2^2 | 128,2064 |
(C4×C8).296C22 = C42.509C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).296C2^2 | 128,2100 |
(C4×C8).297C22 = C42.510C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).297C2^2 | 128,2101 |
(C4×C8).298C22 = C42.512C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).298C2^2 | 128,2103 |
(C4×C8).299C22 = C42.513C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).299C2^2 | 128,2104 |
(C4×C8).300C22 = C42.514C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).300C2^2 | 128,2105 |
(C4×C8).301C22 = C42.517C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).301C2^2 | 128,2108 |
(C4×C8).302C22 = C16⋊C8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).302C2^2 | 128,45 |
(C4×C8).303C22 = C8.31D8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).303C2^2 | 128,62 |
(C4×C8).304C22 = C8.17Q16 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).304C2^2 | 128,70 |
(C4×C8).305C22 = C23.27C42 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).305C2^2 | 128,184 |
(C4×C8).306C22 = C82⋊15C2 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).306C2^2 | 128,185 |
(C4×C8).307C22 = C82⋊2C2 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).307C2^2 | 128,186 |
(C4×C8).308C22 = C8⋊6M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).308C2^2 | 128,187 |
(C4×C8).309C22 = C42.47D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).309C2^2 | 128,215 |
(C4×C8).310C22 = C42.400D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).310C2^2 | 128,216 |
(C4×C8).311C22 = C42.401D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).311C2^2 | 128,217 |
(C4×C8).312C22 = D4⋊4M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).312C2^2 | 128,221 |
(C4×C8).313C22 = Q8⋊5M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).313C2^2 | 128,223 |
(C4×C8).314C22 = D4.M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).314C2^2 | 128,317 |
(C4×C8).315C22 = D4⋊2M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).315C2^2 | 128,318 |
(C4×C8).316C22 = Q8.M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).316C2^2 | 128,319 |
(C4×C8).317C22 = Q8⋊2M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).317C2^2 | 128,320 |
(C4×C8).318C22 = C8⋊M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).318C2^2 | 128,324 |
(C4×C8).319C22 = C8.M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 128 | | (C4xC8).319C2^2 | 128,325 |
(C4×C8).320C22 = C8⋊3M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).320C2^2 | 128,326 |
(C4×C8).321C22 = C4⋊C4.7C8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).321C2^2 | 128,883 |
(C4×C8).322C22 = C8.12M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).322C2^2 | 128,896 |
(C4×C8).323C22 = C16⋊9D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).323C2^2 | 128,900 |
(C4×C8).324C22 = D4.5C42 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).324C2^2 | 128,1607 |
(C4×C8).325C22 = C42.260C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).325C2^2 | 128,1654 |
(C4×C8).326C22 = C42.261C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).326C2^2 | 128,1655 |
(C4×C8).327C22 = C42.678C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).327C2^2 | 128,1657 |
(C4×C8).328C22 = M4(2)⋊23D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).328C2^2 | 128,1667 |
(C4×C8).329C22 = C42.286C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).329C2^2 | 128,1692 |
(C4×C8).330C22 = C42.287C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).330C2^2 | 128,1693 |
(C4×C8).331C22 = M4(2)⋊9Q8 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).331C2^2 | 128,1694 |
(C4×C8).332C22 = Q8×M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).332C2^2 | 128,1695 |
(C4×C8).333C22 = C42.292C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).333C2^2 | 128,1699 |
(C4×C8).334C22 = C42.293C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).334C2^2 | 128,1700 |
(C4×C8).335C22 = C42.294C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).335C2^2 | 128,1701 |
(C4×C8).336C22 = D4⋊6M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).336C2^2 | 128,1702 |
(C4×C8).337C22 = Q8⋊6M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).337C2^2 | 128,1703 |
(C4×C8).338C22 = C42.694C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).338C2^2 | 128,1711 |
(C4×C8).339C22 = C42.302C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).339C2^2 | 128,1715 |
(C4×C8).340C22 = Q8.4M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).340C2^2 | 128,1716 |
(C4×C8).341C22 = C42.696C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).341C2^2 | 128,1717 |
(C4×C8).342C22 = C42.305C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).342C2^2 | 128,1719 |
(C4×C8).343C22 = C42.698C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).343C2^2 | 128,1721 |
(C4×C8).344C22 = D4⋊8M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).344C2^2 | 128,1722 |
(C4×C8).345C22 = Q8⋊7M4(2) | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).345C2^2 | 128,1723 |
(C4×C8).346C22 = C42.307C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).346C2^2 | 128,1724 |
(C4×C8).347C22 = C42.308C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).347C2^2 | 128,1725 |
(C4×C8).348C22 = C42.309C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).348C2^2 | 128,1726 |
(C4×C8).349C22 = C42.310C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).349C2^2 | 128,1727 |
(C4×C8).350C22 = C42.367C23 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).350C2^2 | 128,1869 |
(C4×C8).351C22 = C42.241D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).351C2^2 | 128,1871 |
(C4×C8).352C22 = C42.243D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).352C2^2 | 128,1873 |
(C4×C8).353C22 = C42.244D4 | φ: C22/C1 → C22 ⊆ Aut C4×C8 | 64 | | (C4xC8).353C2^2 | 128,1874 |
(C4×C8).354C22 = D4⋊C16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).354C2^2 | 128,61 |
(C4×C8).355C22 = Q8⋊C16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).355C2^2 | 128,69 |
(C4×C8).356C22 = C8⋊2C16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).356C2^2 | 128,99 |
(C4×C8).357C22 = C8.36D8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).357C2^2 | 128,102 |
(C4×C8).358C22 = C2×C8⋊C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).358C2^2 | 128,180 |
(C4×C8).359C22 = C82⋊C2 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).359C2^2 | 128,182 |
(C4×C8).360C22 = C8⋊9M4(2) | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).360C2^2 | 128,183 |
(C4×C8).361C22 = C2×Q8⋊C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).361C2^2 | 128,207 |
(C4×C8).362C22 = C42.455D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).362C2^2 | 128,208 |
(C4×C8).363C22 = C42.315D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).363C2^2 | 128,224 |
(C4×C8).364C22 = C42.316D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).364C2^2 | 128,225 |
(C4×C8).365C22 = C42.305D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).365C2^2 | 128,226 |
(C4×C8).366C22 = C8×D8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).366C2^2 | 128,307 |
(C4×C8).367C22 = C8×SD16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).367C2^2 | 128,308 |
(C4×C8).368C22 = C8×Q16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).368C2^2 | 128,309 |
(C4×C8).369C22 = C82⋊5C2 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).369C2^2 | 128,441 |
(C4×C8).370C22 = C8.7Q16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).370C2^2 | 128,442 |
(C4×C8).371C22 = C82⋊3C2 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).371C2^2 | 128,443 |
(C4×C8).372C22 = C2×C4⋊C16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).372C2^2 | 128,881 |
(C4×C8).373C22 = C4⋊M5(2) | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).373C2^2 | 128,882 |
(C4×C8).374C22 = C42.6C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).374C2^2 | 128,895 |
(C4×C8).375C22 = D4×C16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).375C2^2 | 128,899 |
(C4×C8).376C22 = C16⋊6D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).376C2^2 | 128,901 |
(C4×C8).377C22 = Q8×C16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).377C2^2 | 128,914 |
(C4×C8).378C22 = C16⋊4Q8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).378C2^2 | 128,915 |
(C4×C8).379C22 = C42.681C23 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).379C2^2 | 128,1663 |
(C4×C8).380C22 = Q8×C2×C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).380C2^2 | 128,1690 |
(C4×C8).381C22 = C8×C4○D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).381C2^2 | 128,1696 |
(C4×C8).382C22 = C2×C4.SD16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).382C2^2 | 128,1861 |
(C4×C8).383C22 = C42.355D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).383C2^2 | 128,1863 |
(C4×C8).384C22 = C4.16D16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).384C2^2 | 128,63 |
(C4×C8).385C22 = Q16⋊1C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).385C2^2 | 128,64 |
(C4×C8).386C22 = C16⋊3C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).386C2^2 | 128,103 |
(C4×C8).387C22 = C16⋊4C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).387C2^2 | 128,104 |
(C4×C8).388C22 = C2×C8⋊1C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).388C2^2 | 128,295 |
(C4×C8).389C22 = C42.42Q8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).389C2^2 | 128,296 |
(C4×C8).390C22 = C8⋊7M4(2) | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).390C2^2 | 128,299 |
(C4×C8).391C22 = C42.43Q8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).391C2^2 | 128,300 |
(C4×C8).392C22 = C8⋊6D8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).392C2^2 | 128,321 |
(C4×C8).393C22 = C8⋊6Q16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).393C2^2 | 128,323 |
(C4×C8).394C22 = C8⋊4D8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).394C2^2 | 128,444 |
(C4×C8).395C22 = C8⋊4Q16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).395C2^2 | 128,445 |
(C4×C8).396C22 = C4×D16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).396C2^2 | 128,904 |
(C4×C8).397C22 = C4×SD32 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).397C2^2 | 128,905 |
(C4×C8).398C22 = C4×Q32 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).398C2^2 | 128,906 |
(C4×C8).399C22 = C4.4D16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).399C2^2 | 128,972 |
(C4×C8).400C22 = C4.SD32 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).400C2^2 | 128,973 |
(C4×C8).401C22 = C4⋊D16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).401C2^2 | 128,978 |
(C4×C8).402C22 = C4⋊Q32 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).402C2^2 | 128,979 |
(C4×C8).403C22 = C16⋊5D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).403C2^2 | 128,980 |
(C4×C8).404C22 = C16⋊2Q8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).404C2^2 | 128,984 |
(C4×C8).405C22 = C16⋊3Q8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).405C2^2 | 128,986 |
(C4×C8).406C22 = C2×C4×Q16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).406C2^2 | 128,1670 |
(C4×C8).407C22 = C4×C4○D8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).407C2^2 | 128,1671 |
(C4×C8).408C22 = C2×C4⋊Q16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).408C2^2 | 128,1877 |
(C4×C8).409C22 = C2×C8⋊2Q8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).409C2^2 | 128,1891 |
(C4×C8).410C22 = C42.364D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).410C2^2 | 128,1892 |
(C4×C8).411C22 = C42.366D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).411C2^2 | 128,1901 |
(C4×C8).412C22 = C42.367D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).412C2^2 | 128,1902 |
(C4×C8).413C22 = C8.22SD16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).413C2^2 | 128,974 |
(C4×C8).414C22 = C8.21D8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).414C2^2 | 128,981 |
(C4×C8).415C22 = C16.5Q8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).415C2^2 | 128,985 |
(C4×C8).416C22 = C42.360D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).416C2^2 | 128,1879 |
(C4×C8).417C22 = C2×C8.5Q8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).417C2^2 | 128,1890 |
(C4×C8).418C22 = C8≀C2 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 16 | 2 | (C4xC8).418C2^2 | 128,67 |
(C4×C8).419C22 = C16.3C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 32 | 2 | (C4xC8).419C2^2 | 128,105 |
(C4×C8).420C22 = C2×C8.C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 32 | | (C4xC8).420C2^2 | 128,884 |
(C4×C8).421C22 = C16○D8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 32 | 2 | (C4xC8).421C2^2 | 128,902 |
(C4×C8).422C22 = C8○D16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 32 | 2 | (C4xC8).422C2^2 | 128,910 |
(C4×C8).423C22 = C2×C8⋊2C8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).423C2^2 | 128,294 |
(C4×C8).424C22 = C8⋊8M4(2) | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).424C2^2 | 128,298 |
(C4×C8).425C22 = C8⋊9SD16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).425C2^2 | 128,322 |
(C4×C8).426C22 = C8⋊8SD16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).426C2^2 | 128,437 |
(C4×C8).427C22 = C8⋊5D8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).427C2^2 | 128,438 |
(C4×C8).428C22 = C8⋊5Q16 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).428C2^2 | 128,439 |
(C4×C8).429C22 = C82⋊12C2 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).429C2^2 | 128,440 |
(C4×C8).430C22 = C2×C8⋊3Q8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).430C2^2 | 128,1889 |
(C4×C8).431C22 = C42.365D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).431C2^2 | 128,1899 |
(C4×C8).432C22 = C42.308D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).432C2^2 | 128,1900 |
(C4×C8).433C22 = C2×C16⋊5C4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).433C2^2 | 128,838 |
(C4×C8).434C22 = C16○2M5(2) | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).434C2^2 | 128,840 |
(C4×C8).435C22 = C4×C8○D4 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).435C2^2 | 128,1606 |
(C4×C8).436C22 = C2×C8⋊4Q8 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 128 | | (C4xC8).436C2^2 | 128,1691 |
(C4×C8).437C22 = C42.290C23 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).437C2^2 | 128,1697 |
(C4×C8).438C22 = C42.291C23 | φ: C22/C2 → C2 ⊆ Aut C4×C8 | 64 | | (C4xC8).438C2^2 | 128,1698 |
(C4×C8).439C22 = C16⋊5C8 | central extension (φ=1) | 128 | | (C4xC8).439C2^2 | 128,43 |
(C4×C8).440C22 = C8⋊C16 | central extension (φ=1) | 128 | | (C4xC8).440C2^2 | 128,44 |
(C4×C8).441C22 = C8×M4(2) | central extension (φ=1) | 64 | | (C4xC8).441C2^2 | 128,181 |
(C4×C8).442C22 = C4×M5(2) | central extension (φ=1) | 64 | | (C4xC8).442C2^2 | 128,839 |
(C4×C8).443C22 = C42.13C8 | central extension (φ=1) | 64 | | (C4xC8).443C2^2 | 128,894 |